PEM Fuel Cell System Manufacturing Cost Analysis for Automotive Applications

Yong Yang President

November 12, 2014

Austin Power Engineering LLC 1 Cameron St Wellesley, MA 02482 USA

www.AUSTINPOWERENG.com

yang.yong@austinpowereng.com

© 2014 Austin Power Engineering LLC

Conduct a bottom-up manufacturing cost analysis of a 80kW light-duty vehicle fuel cell power system which includes a fuel cell system, a hydrogen storage tank, and a hybrid Li-ion battery pack.

Executive decision making

 Our manufacturing cost analysis focuses on helping manufacturers make strategic design, sourcing and investment decisions based on the analysis of current and potential manufacturing costs.

Direct research and inspire innovation

- Help identify the factors with significant impact on technology system costs
- Help identify the areas where more research could lead to significant reductions in system costs.

Design and manufacturing cost reduction

- Understand the costs of each design feature and part as well as the system costs at the design stage.
- Reduce the manufacturing cost via "true value mapping" which virtualizes the costs in every manufacturing step.
- Facilitate future government agency and investor funding application

Approach Manufacturing Cost Modeling Methodology

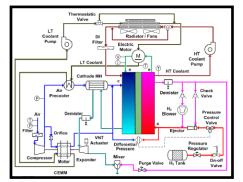
This approach has been used successfully for estimating the cost of various technologies for commercial clients and the DOE.

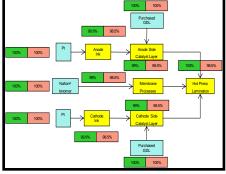
Technology Assessment

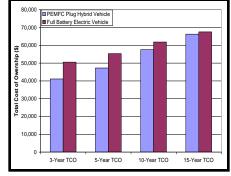
Literature research

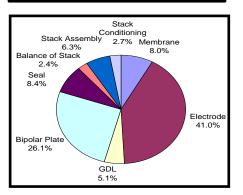
- Definition of system and component diagrams
- Size components
- Develop bill-ofmaterials (BOM)

Manufacturing Cost Model

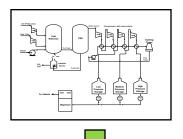

- Define system value chain
- Quote off-shelve parts and materials
- Select materials
- Develop processes
- Assembly bottom-up cost model
- Develop baseline costs


Scenario Analyses


- Technology scenarios
- Sensitivity analysis
- Economies of Scale
- Supply chain & manufacturing system optimization
- Life cycle cost analysis

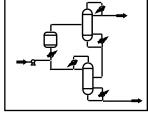

Verification & Validation

- Cost model internal verification reviews
- Discussion with technical developers
- Presentations to project and industrial partners
- Audition by independent reviewers



Combining performance and cost model will easily generate cost results, even when varying the design inputs.

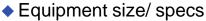
Conceptual Design



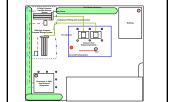
System layout and

Site Plans

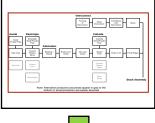
equipment requirements



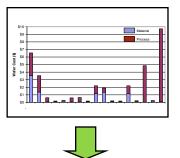
Process Simulation



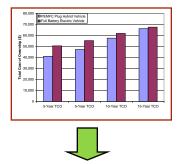
Capital Cost Estimates



Safety equipment, site prep, land costs

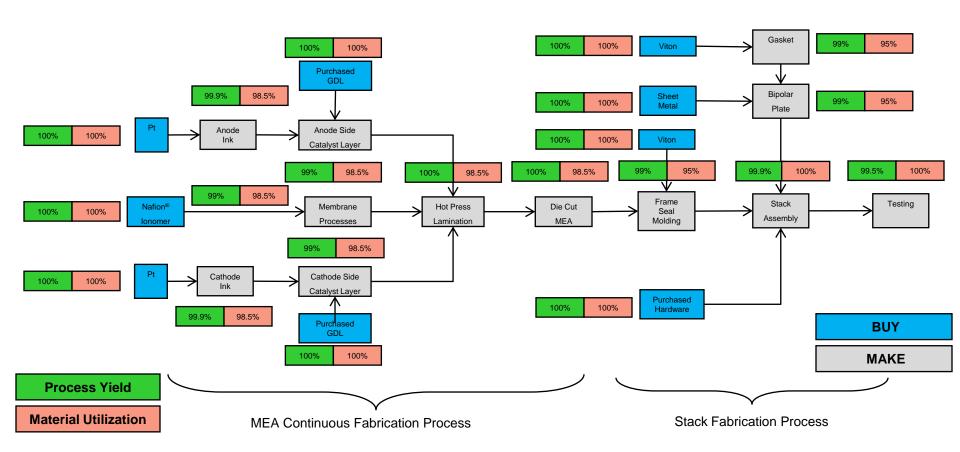


High and low volume equipment costs


Process Cost Calcs

Material cost

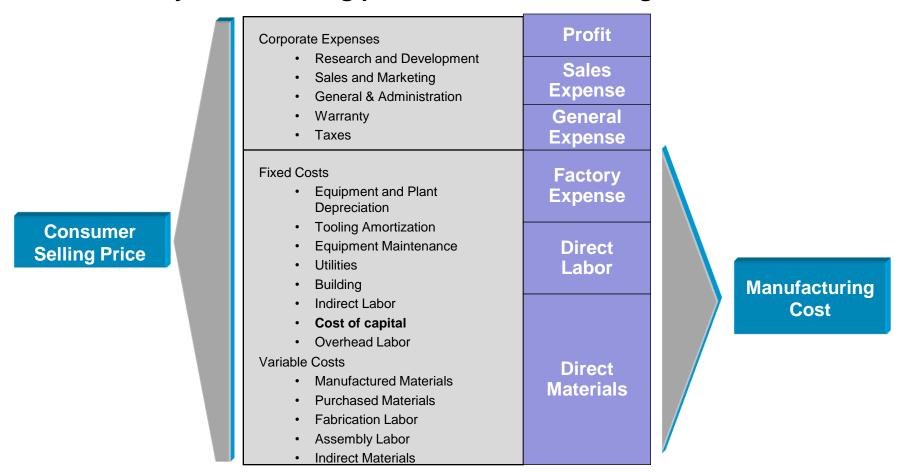
Product Costs



Product cost (capital, O&M, etc.)

Approach Example Manufacturing Flow Chart

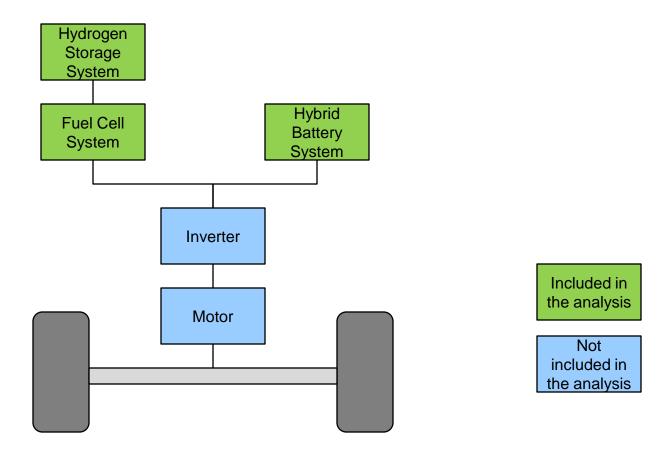
The bottom-up cost approach will be used to capture accurately the manufacturing costs for each fabrication step.



True-value-mapping analysis virtualizes costs in each fabrication step, which breaks down costs into materials, labor, capex, utility, maintenance, etc.

Approach Manufacturing Cost Structure

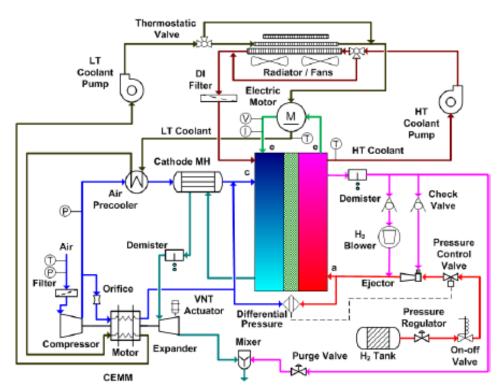
Austin Power Engineering's manufacturing cost models can be used to determine a fully loaded selling price to consumers at high or low volumes.



We assume 100% financing with an annual discount rate of 10%, a 10-year equipment life, a 25-year building life, and three months working capital.

Approach Scope

Our fuel cell powertrain cost analysis are focus mainly on fuel cell system, hydrogen storage, and hybrid battery. Inverter and traction motor costs are not included.


Approach Scope

In 2014 FCS, we update our 2013 FCS study with 2013 ANL system cost configuration, Treadstone coating metal bipolar plate, as well as a cryo-compressed H2 (CcH2) storage tank and a hybrid battery pack.

System Components	2013 FCS	2014 FCS
80kW PEM Fuel Cell	80 kW _{net} Stack Membrane Electrode GDL/MPL Nitride Metal Bipolar Plate Seal & Gasket Balance of Stack BOP Fuel Management with H2 Circulation Pump Thermal Management Air Management Water Management Water Management Assembly, Conditioning, & Testing	*80 kW _{net} Stack *Membrane Electrode GDL/MPL Treadstone Coating Metal Bipolar Plate Seal & Gasket Balance of Stack *BOP Fuel Management with Revised H2 Circulation Pump Thermal Management Air Management Water Management *Assembly, Conditioning, & Testing
H2 Storage Tanks	Type IV compressed H2Tank5.6 kg usable H2	 Cryo-compressed H2 storage tank 10 kg usable H2
Hybrid Battery	• Li-lon hybrid battery (40kW, 1.2 kWh)	 Li-Ion hybrid battery (40kW, 1.2 kWh) Updated process parameters

The 80 kW_{net} direct hydrogen PEM fuel cell system configuration is referenced in previous and current studies conducted by Argon National Laboratory (ANL).

80 kW_{net} Fuel Cell System Schematic¹

1. R. K. Ahluwalia, X. Wang, "Fuel cells systems analysis," 2013 DOE Hydrogen and Fuel Cells Program Review, Washington DC, May13-16, 2013.

Key Parameters

Stack

- 3M NSTFC MEA
- 25 μm supported membrane
- 0.153 mg/cm² Pt
- Power density: 692 mW/cm²
- Metal bipolar plates
- Non-woven carbon fiber GDL

Air Management

- Honeywell type compressor /expender
- Air-cooled motor / Air-foil bearing

Water Management

- Cathode planar membrane humidifier with pre-cooler
- No anode humidifier

Thermal Management

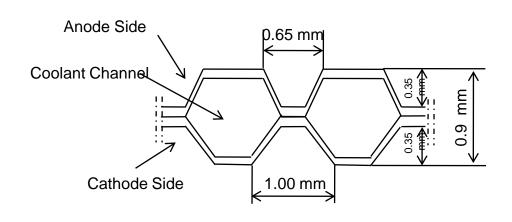
Micro-channel HX

Fuel Management

Parallel ejector / pump (100W) hybrid

Based on ANL's stack performance analysis, we make the following system and material assumptions for the cost estimation.

Stack Components	Unit	2013	2014
Production volume	systems/year	500,000	500,000
Stacks' net power	kW	80	80
Stacks' gross power	kW	88	89.4
Cell power density	mW/cm ²	984	692
Peak stack temp.	Degree C	87	92.3
Peak stack pressure	Bar	2.5	2.5
Cell Voltage	Volt	0.676	0.695
System Voltage (rated power)	Volt	300	300
Platinum price	\$/tr.oz.	\$1,100	\$1,100
Pt loading	mg/cm ²	0.196	0.153
Membrane type		Reinforced 3M PFSA	Reinforced 3M PFSA
Membrane thickness	micro meter	25	25
GDL layer		None-woven carbon paper	None-woven carbon paper
GDL thickness	micro meter	185	185
MPL layer thickness	micro meter	40	40
Bipolar plate type		76Fe-20Cr-4V with nitridation surface treatment	SS316L with Treadstone Coating
Bipolar plate base material Thickness	micro meter	100	100
Seal material		Viton [®]	Viton [®]


We use Pt price at \$1,100/troz which is the similar to past 15 year average Pt price. The current Pt price is about \$1,200/troz.

> Platinum Monthly Average prices between 01 Jan 2000 and 03 Nov 2014 JM Base Price \$/0z Platinum average: \$1,139.24

The metal bipolar plate cost is based on discussions with Treadstone on their thermal spray process¹.

Flow Channel Dimension

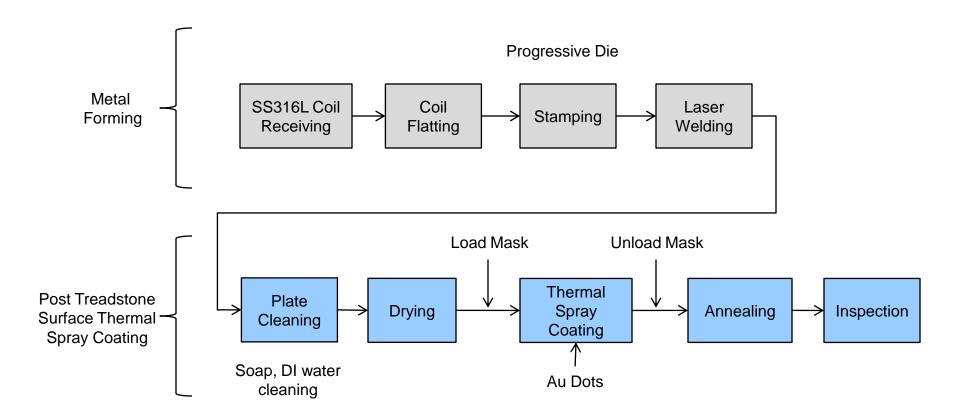
	5
Base Material Thickness (mm)	0.1
Base Material	SS316L
# of Tiles in a Pair of Bipolar Plate	2
Cooling Channel	Yes
Stamping ^{2.3}	Progressive Die

Parameter

Joint Method

- 1. Discussion with Treadstone, 2013, 2014
- 2. US 20090081520 (Hitachi)
- 3. Discussion with Minster Press Inc., April 2010

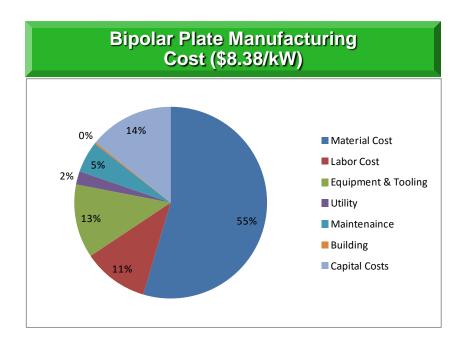
System /Component	Annual Production Volume
Fuel cell system	500,000
Bipolar Plate	216.5 Million


Spot + Edge

Laser

Welding

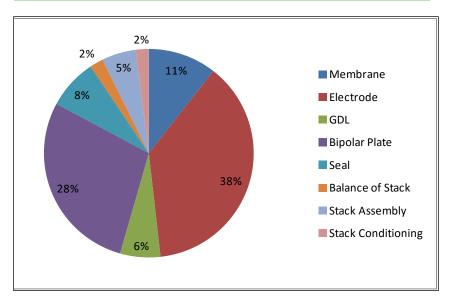
Specification


Fabrication processes include base metal plate stamping, plate laser welding, and Treadstone thermal spray post coating.

The thermal spray coating process costs about \$0.35 per plate. The total cost of Treadstone thermal spray coated metal plate is approximately \$8.38/kW.

	Bipolar Plate Manufacturing Cost¹ (\$/kW)
Stamping ²	\$5.28
Laser Welding	\$0.95
Treadstone Coating ³	\$2.16
Total	\$8.38

¹ Manufactured cost on a kW_{net} basis

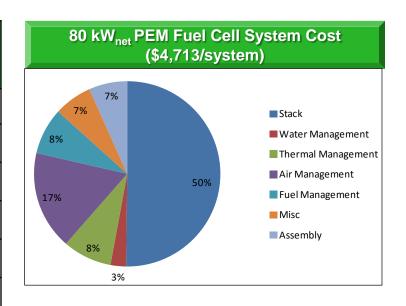

² Includes SS316L material cost

³ Includes Au dot material cost

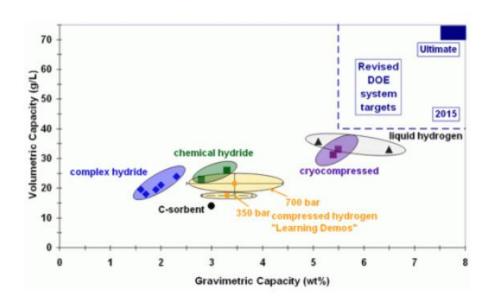
The 80 kW_{net} PEM fuel cell stack costs approximately \$30/kW. Electrodes, bipolar plates, and membranes are the top three cost drivers.

Stack Componen ts	2014Stack Cost (\$/kW)	2014Stack Cost (\$/kW)	Comments
Membrane	\$2.14	\$3.13	PFSA ionomer (\$80/lb)
Electrode	\$9.51	\$11.11	3M NSTFC
GDL	\$1.30	\$1.85	No-Woven carbon paper
Bipolar Plate	\$6.36	\$8.38	Treadstone Coating metallic plates
Seal	\$2.00	\$2.30	Viton
BOS	\$0.55	\$0.62	Manifold, end plates, current collectors, insulators, tie bolts, etc.
Final Assembly	\$1.40	\$1.56	Robotic assembly
Stack Conditioning	\$0.60	0.60	2 Hours
Total stack ²	\$23.85	\$29.53	

80 kW_{net} PEM Fuel Cell Stack Cost $($29.5/kW_{net})$

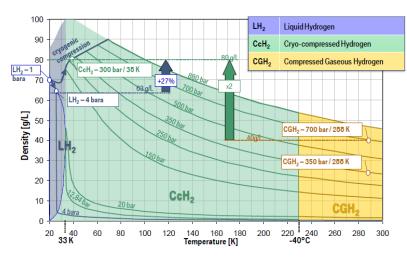


- 1. Stack assembly cost category included MEA assembly and stack QC; QC included visual inspection, and leak tests for fuel, air, and coolant loops.
- 2. Results may not appear to calculate due to rounding of the component cost results.


The 80 kW_{net} PEM fuel cell system costs \$59/kW at the mass production volume. Stack, air management, and thermal management are the top three cost drivers.

System Components	2013 System Cost (\$/kW)	2014 System Cost (\$/kW)	Comments
Stack	\$23.9	\$29.6	
Water management	\$1.6	\$1.6	Cathode side humidifier, etc.
Thermal management	\$5.0	\$5.0	HX, coolant pump, etc.
Air management	\$10.1	\$10.1	CEM, etc.
Fuel management	\$4.8	\$4.8	H2 pump, etc.
Balance of system	\$3.9	\$3.9	Sensors, controls, wire harness, piping, etc.
System assembly	\$3.9	\$3.9	
Total system ^{1, 2}	\$53.2	\$58.9	

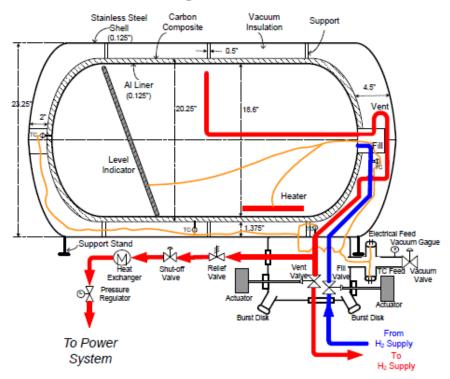
- 1. Assumed 15% markup to the automotive OEM for BOP components
- 2. Results may not appear to calculate due to rounding of the component cost results.


Cryo-compressed H2 storage tanks have gravimetric and volumetric capacity advantage comparing to compressed h2 storage tanks.

Status of Current Hydrogen Storage Technologies

http://energy.gov/eere/fuelcells/status-hydrogen-storage-technologies

BMW HYDROGEN STORAGE. CCH₂ – CRYOGENIC GAS DENSER THAN LH₂.



K. Kunze, O. Kircher, Cryo-compressed hydrogen storage, BMW, Sept. 28, 2012.

The cryo-compressed hydrogen tank design is referenced in studies TIAX conducted on hydrogen storage¹.

LLNL 2nd Gen Design with ANL Modifications

Cryo-Compressed Hydrogen Storage System Schematic^{1, 2}

- 1. S. Lasher and Y. Yang, "Cryo-compressed and Liquid Hydrogen System Cost Assessments", DOE Merit Review, 2008
- 2. R.K. Ahluwalia, i.e. "Cryo-compressed hydrogen storage: performance and cost review" Februrary, 2011

Key Parameters

System Volume

Storage: 151LVessel: 224L

System Weight: 144.7kg

LH2 storage: 10.7kg (usable 10.1 kg)

CH2 storage: 2.8kg

Tank

Carbon fiber: Toray T700S

• Carbon fiber / resin ratio: 0.68 : 0.32

(weight)

Translational strength factor: 81.5%

• Safety factor: 2.25

Carbon fiber composite layer

thickness: 12 mm
• Liner: 3mm Al

Vacuum gap: 40 mm with 40 layers of

MLVI

Outer Shell: 3 mm thick SS304

• Gravimetric capacity: 7.1 wt%

Volumetric capacity: 44.5 kg/m³

The single tank design had a usable hydrogen storage capacity of 10.1 kg.

17

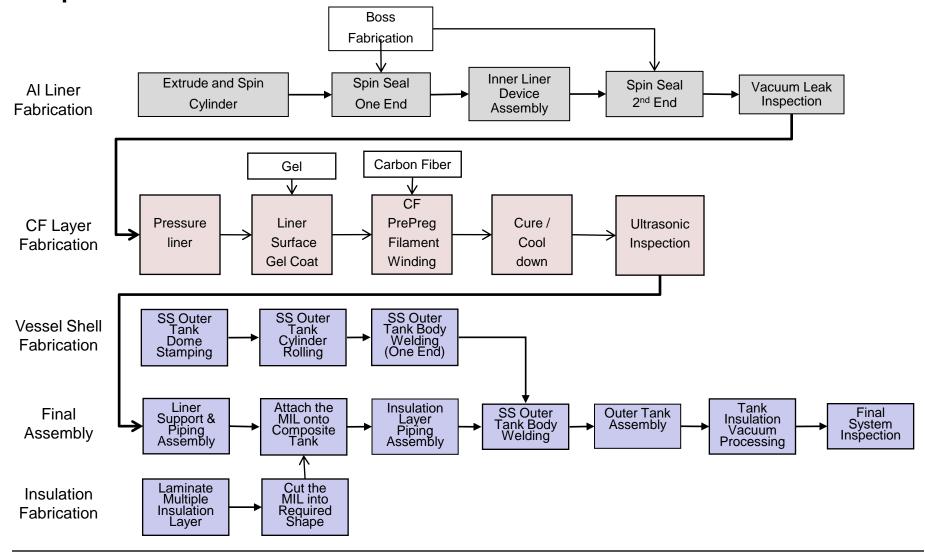
The cryo-compressed H2 system major components are listed.

Major Tank Components

- Aluminum End Boss
- Aluminum liner
- Carbon fiber composite layer
- MLVI insulation
- SS304 vacuum shell tank
- Balance of vessel

Major BOP Components

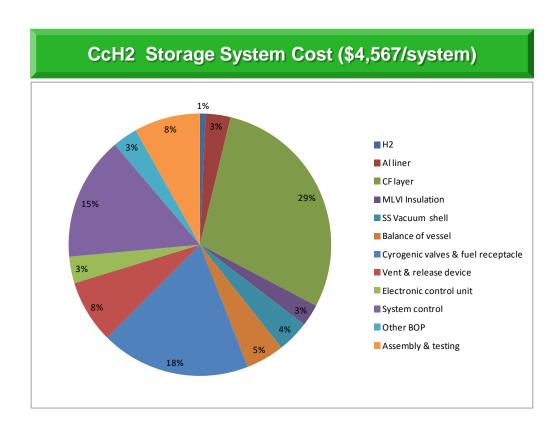
- Fuel receptacle
- Vent & release devices
- Electronic control unit
- System control unit (pressure regulator, etc.)
- HX
- Piping & fittings
- Wire hardness
- Frame, supporting, etc.


Assumptions for the hydrogen storage tank design are based on the literature review and third-party discussions.

Stack Components	Unit	Current System	Comments
Production volume	systems/year	500,000	High Volume
Usable hydrogen	Kg	10.1	
Total H2 in the tank	Kg	10.7	
Tank type			With Al liner
Tank max pressure	PSI	5,000	
# of tanks	Per System	1	
Safety factor		2.25	
Tank length/diameter ratio		3:1	
Liner material		Al	
Liner thickness	mm	3	
Carbon fiber type		Toray T700S	
Carbon fiber cost	\$/lbs	12	
Carbon fiber vs. resin ratio		0.68:0.32	Weight
Carbon fiber translational Strength factor		81.5%	
Carbon fiber composite layer thickness	mm	12	
Vacuum gap	mm	40	
# of MLVI layer		40	
Outer layer		SS304	
Outer layer thickness	mm	3	

19

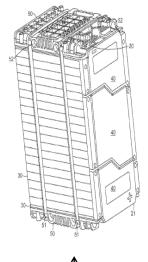
A vertically integrated manufacturing process is assumed for the tank and BOP components.



Cryo-compressed H2 Storage System Cost

In the 10.1kg cryo-compressed hydrogen storage system, the carbon fiber composite layer, cryogenic valves, system control valves are the top three cost drivers.

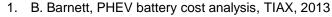
System Components	2014 CcH2 Cost (\$/kWh)
H2	\$0.10
Al liner	\$0.42
CF layer	\$3.93
MLVI Insulation	\$0.37
SS Vacuum shell	\$0.53
Balance of vessel	\$0.64
Cyrogenic valves & fuel receptacle	\$2.50
Vent & release device	\$1.05
Electronic control unit	\$0.45
System control	\$2.07
Other BOP	\$0.42
Assembly & testing	\$1.10
Total:	\$13.57



A lithium-ion battery pack will provide hybridization of a fuel cell vehicle which improves fuel economy as well as having the function as a startup battery.

Battery price is decreasing¹:

- Process throughput increased in the past a few years.
- Tooling & equipment costs are decreasing
- Cathode active material cost did not change much.
- Some battery components prices decreased, such as separator, etc..

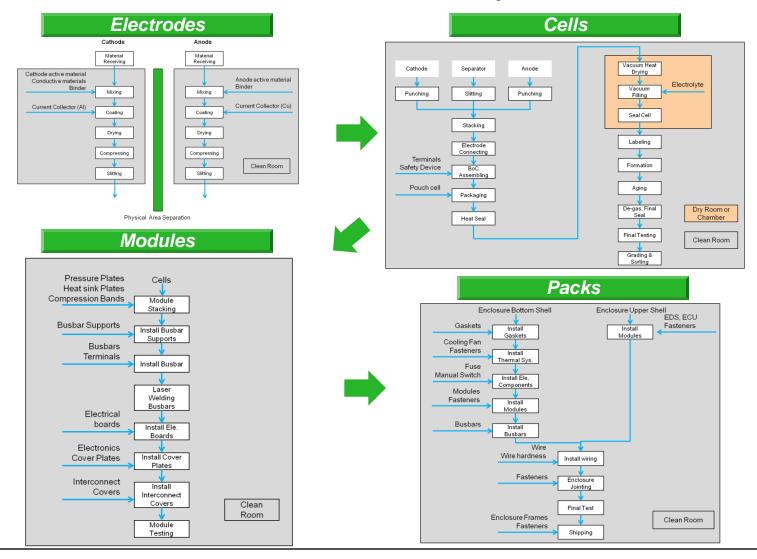

Key Parameters

System

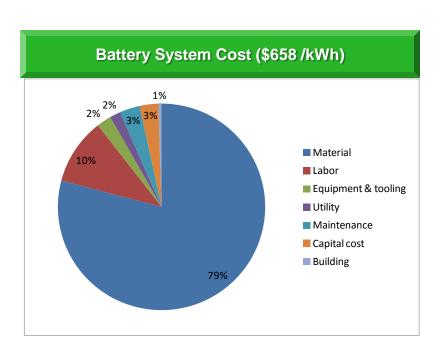
- Power: 40 kW
- Energy capacity: 1.2 kWh usable
- Power to energy ratio: 33:1
- Percent SOC: 80%
- Fade: 20%

Cell

- Cell format: Pouch cell
- Cathode active Material: manganese spinel
- •Anode active material: graphite



2. US patent 20090169990

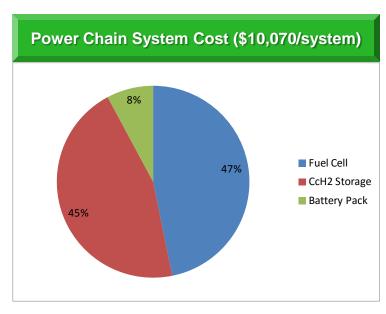

22

A vertically integrated manufacturing process is assumed for the four-level battery pack fabrication: electrode, cell, module, and pack.

The hybrid lithium-ion battery pack costs \$658/kWh. Battery management system and packaging have higher cost contributions.

Cost Category	2013 Pack Cost (\$/pack)	2014 Pack Cost (\$/pack)
Material	\$775	\$624.8
Labor	\$116.96	\$81.8
Equipment & tooling	\$48.03	\$18.1
Utility	\$26.76	\$13.1
Maintenance	\$23.79	\$25.2
Capital cost	\$37.85	\$23.1
Building	\$5.72	\$3.8
Total	\$1,033.83	\$790.0
Total (\$/kWh)*	\$861.52	\$658.3

The 1.2 kWh* lithium-ion battery system cost \$790 per pack at the mass production volume.



^{*} Based on usable energy (1.88 kWh x $0.8 \times 0.8 = 1.2 \text{ /kWh}$)

Conclusion

PEM fuel cell system, onboard hydrogen storage, and hybrid battery cost approximately \$10,070 per vehicle.

Cost Category	2013 Pack Cost (\$/pack)	2014 Pack Cost (\$/pack)	Comments
Fuel Cell	\$4,256	\$4,713	2014 has lower power density.
H2 Storage	\$3,028	\$4,567	2014 CcH2 has 10kg usable hydrogen vs. 2013 5.6 kg CH2
Battery Pack	\$1,034	\$790	Reduce material cost and increase process throughputs in 2014.
Total:	\$8,318	\$10,070	

- The mass production manufacturing cost of the 80 kW_{net} PEMFC stack is estimated to be \$30/kW.
- The mass production OEM cost of the 80 kW_{net} PEMFC system is estimated to be \$59/kW
- The 10.1kg cryo-compressed on-board hydrogen storage system is estimated to be \$13.6/kWh at the mass production.
- The hybrid lithium-ion battery (40kW, 1.2kWh) costs \$790 per pack.

25

Thank You!

Contact: Yong Yang

Austin Power Engineering LLC

1 Cameron St, Wellesley, MA 02482

781-239-9988 978-263-0397 yang.yong@austinpowereng.com www.austinpower.co

